SNOMED CT Expo 2016 Presentation or Poster Abstract # Title: Detecting Misaligned and Missing Concepts in SNOMED CT using Structural and Lexical Patterns Presenter: Licong Cui^a, Wei Zhu^a, Shiqiang Tao^a, James T Case^b, Olivier Bodenreider^b, GQ Zhang^a a: University of Kentucky, Lexington, USA; b: National Library of Medicine, USA #### **Audience** Developers and users of SNOMED CT interested quality assurance. ### **Objectives** - 1. To learn about quality assurance challenges in SNOMED CT; - 2. To understand how structural and lexical approaches can help identify misaligned and missing concepts; - 3. To describe the contribution of visual representation of subgraphs to quality assurance. #### **Abstract** Objective: Quality assurance of large ontological systems such as SNOMED CT is an indispensable part of the terminology management lifecycle. We introduce a hybrid structural-lexical method for scalable and systematic discovery of novel anomalies in SNOMED CT. The structural component is based on shared *isa* relations to other concepts. The lexical component leverages shared words in descriptions between concepts. Material and Methods: All non-lattice subgraphs (the structural part) in SNOMED CT are exhaustively extracted. Four types of lexical patterns (the lexical part) are identified among the concepts involved in non-lattice subgraphs. Non-lattice subgraphs exhibiting such lexical patterns are often indicative of misaligned and missing concepts. Results: Applying our hybrid structural-lexical method to the September 2015 version of SNOMED CT (U.S. edition), we extracted 171,011 non-lattice subgraphs, among which 6,801 matched the lexical patterns. A subset of 2,046 small non-lattice subgraphs with sizes 4 to 6 with lexical patterns was obtained. A random sample of 100 of these subgraphs was selected, visualized and manually reviewed by two domain experts. Of these, 59 (59%) revealed errors confirmed by the experts. The most frequent type of error was missing *isa* relations due to incomplete or inconsistent modeling of the concepts. Discussion: The combined non-lattice and lexical-based anomalies have not been uncovered by other existing ontology quality assurance approaches known to date. Non-lattice subgraphs of sizes 4, 5 and 6 can be easily visualized for manual inspection by experts. It also makes sense to investigate them first, because they are often included in larger subgraphs. Conclusions: Our hybrid structural-lexical method is innovative and effective in detecting SNOMED CT anomalies that have escaped existing quality assurance processes. # SNOMED CT Expo 2016 Presentation or Poster Abstract ## References 1. Zhang GQ, Zhu W, Sun M, Tao S, Bodenreider O, Cui L. MaPLE: A MapReduce Pipeline for Lattice-based Evaluation and Its Application to SNOMED CT. Proc IEEE Int Conf Big Data. 2014 Oct;2014:754-759. (PMID: 25705725)